

Полная энциклопедия

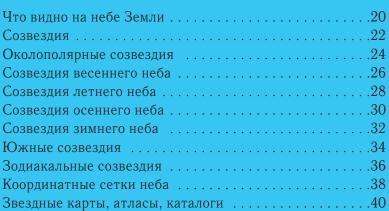
ВАЛЕНТИН ЦВЕТКОВ

Полная энциклопедия

Художник Нина Краснова

#эксмодетство Москва 2025

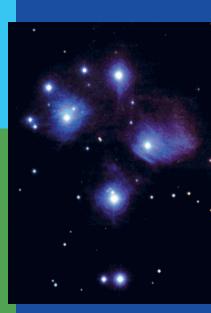
Содержание



Вселенная

Масштабы нашего мира	12
Колумбы Вселенной -1	4
Колумбы Вселенной-21	6
Наука, философия, религия	8

Небо Земли

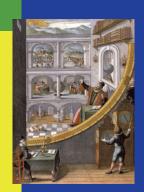


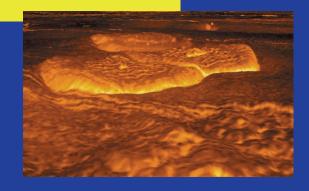
Суточное движение
Небо разных широт44
Движение Солнца. Времена года
Движение Луны
Движение планет
Затмения Солнца и Луны52
Небесный полюс не стоит на месте!
Время
Календарь

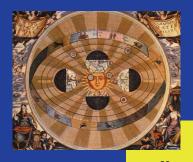
Методы

Астрономические наблюдения	0
Астрономические инструменты	
дотелескопной эпохи	2
Обзор астрономических инструментов	
дотелескопной эпохи	4
Гелескопы6	
Расстояния до звезд	8
Электромагнитное излучение	0
Обсерватории	2

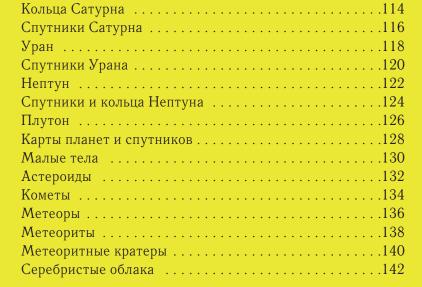
Содержание

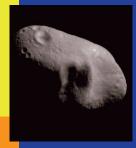





Солнечная система

Планеты Солнечной системы
олнце
Атмосфера Солнца
Меркурий
Венера
Вемля
Луна
Mapc
Юпитер
Спутники Юпитера110
Сатурн

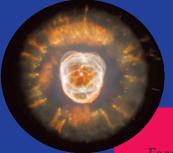




Наша Галактика


Что входит в нашу Галактику	4
Характеристики звезд	6
Звезда как физическое тело	8
Диаграмма Герцшпрунга-Ресселла	0
Двойные и кратные звездные системы	2
Скопления звезд	4

Содержание

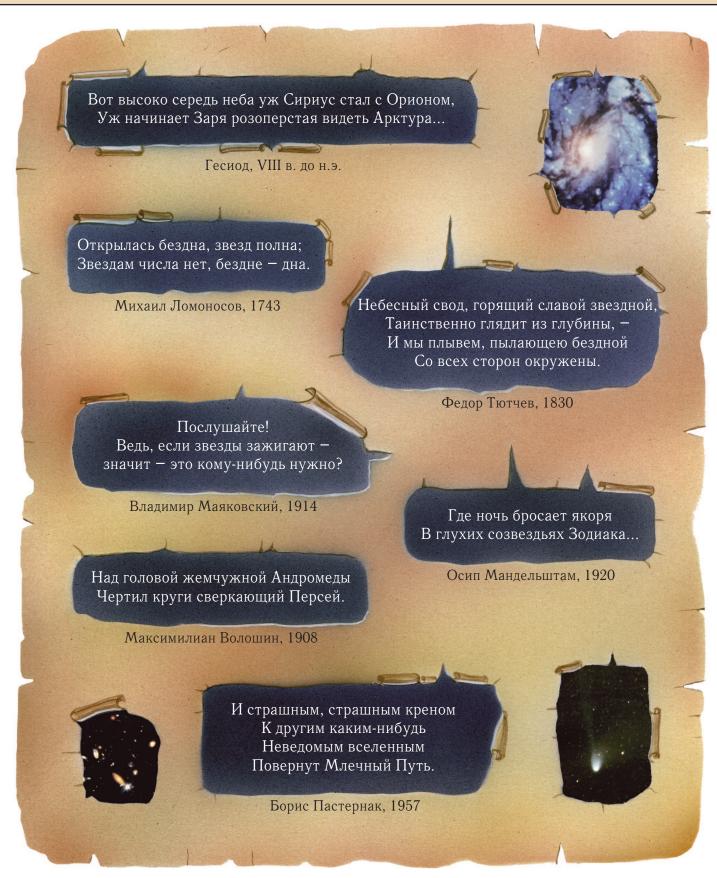


Внегалактическая астрономия

Открытие галактик
Туманность Андромеды
Расстояния до галактик
Классификация галактик
Эллиптические галактики
Спиральные галактики
Неправильные галактики192
Карликовые галактики
Взаимодействующие галактики

Галактики с активными ядрами	.198
Скопления галактик	.200
Местная группа галактик	.202
Квазары	.204
Гравитационные линзы	.206
Скрытая масса галактик	.208

История Вселенной



Структура Вселенной
Прошлое Вселенной
Расширение Вселенной
Большой взрыв
Реликтовое излучение
Инфляционная Вселенная
Вселенная без звезд и галактик
Рождение звезд
Конечные стадии жизни звезд
Рождение Солнечной системы
Происхождение планет
Как у планет появились спутники
Антропный принцип

Предметный указатель	236
Именной указатель	240
Справочные данные	242

4TO TAKOE KOCMOC?

Разные люди употребляют это слово в разных смыслах. Для одних это то место, куда летают космонавты на своих космических кораблях. Для других — всё, что не Земля. Наконец, некоторые, когда говорят о космосе, имеют в виду просто что-то очень-очень большое, колоссальное, часто даже совсем не относящееся к астрономии.

Мы с вами, употребляя это слово, будем говорить о всей Вселенной, о том материальном мире, в котором мы живем. Древняя наука астрономия, изучающая Вселенную, имеет самый широкий предмет из всех наук. Она стремится познать все те порой очень удаленные от нас объекты, которые мы можем каким-то образом зарегистрировать приборами.

Оказывается, многие явления и процессы на Земле можно понять, только если и нашу родную планету рассматривать как космическое тело. Смена дня и ночи, чередование времен года, приливы и отливы и другие важные для человека природные события объяснимы только исходя из космической природы планеты Земля.

В древности астрономия оказывала человеку множество чисто практических услуг. Мореплаватель в открытом море не имел других ориентиров, кроме небесных светил; земледельцу они указывали сроки сезонов, связанных с сельскохозяйственными работами; всем людям давали ясные и надежные способы счета времени.

Но не только практические вопросы всегда волновали людей. Человек носит в себе неискоренимое любопытство к устройству мира, в котором он живет. Что это? как это устроено? почему оно такое, а не иное? как оно связано со всем остальным? какой смысл в его существовании? — вот вопросы, относимые человеком ко всем окружающим его предметам и явлениям. Эта любознательность — основа фундаментальных наук. Накопленные людьми знания порой и не имеют прямого практического выхода, или же он просматривается в очень отдаленной перспективе.

Еще одна особенность космических объектов в том, что они очень красивы. Уже древние, любуясь звездным небосводом, населяли его богами и героями. Небо было символом гармонии, источником вдохновения и оставалось таким на протяжении всей истории человеческой культуры. Следы этого мы обнаруживаем уже у истоков мировой литературы, в древнегреческих поэмах Гомера и Гесиода. Вслед за ними многие поэты и художники разных эпох поднимали свой взор к звездному небу, питавшему их творчество.

Вселенная

Прежде чем знакомиться с телами, составляющими Вселенную, давайте попытаемся представить себе масштабы этих тел и расстояния, которые их разделяют. Не будем пока говорить о том, как получены приведенные здесь результаты, — этим мы займемся в других разделах книги.

В обыденной жизни понятия «близкий» и «далекий» относительны. Для москвича поездка в Звенигород — это «далеко» по сравнению с прогулкой в соседний парк, но «близко» по сравнению с полетом во Владивосток. Мы измеряем такие расстояния километрами. Самый протяженный маршрут по нашей планете — кругосветное путешествие — составляет около 40 000 км. Движущийся с огромной (по житейским понятиям) скоростью 8 км/с космический корабль покрывает это расстояние приблизительно за полтора часа.

До ближайшего космического тела — Луны — около 380 000 км. Луна в четыре раза меньше Земли по диаметру. Диаметр Солнца, напротив, пре-

щие в Солнечную систему, расположены еще дальше, тут и астрономическая единица слишком мала. Используем для оценки расстояния то время, которое затрачивает, чтобы это расстояние преодолеть, самый быстрый «бегун» во Вселенной — луч света. В XX веке физики доказали: движение со скоростями больше скорости света невозможно. Эта скорость постоянна и составляет колоссальную величину — 300 000 км/с. Лучу света требуется около 8 минут, чтобы долететь от Солнца до Земли. Расстояние, которое свет проходит в течение года, называется световой год. Ближайшая к Солнцу звезда — Проксима Центавра — удалена от него более чем на 4 световых года.

восходит земной в 109 раз, а вот диски Луны и

Солнца на небе имеют почти одинаковые разме-

ры. Это потому, что Солнце от нас гораздо даль-

Начиная с этого момента нашего движения в

ше – до него 150 000 000 км.

МАСШТАБЫ НАШЕГО МИРА

Расстояние, которое свет проходит в течение года, называется световой год и равно 9 500 000 000 000 км

Лучу света требуется около 8 минут, чтобы долететь от Солнца до Земли

Проксима Центавра Ближайшая к Солнцу звезда – Проксима Центавра – отделена от него расстоянием более 4 световых лет

Солнце входит в гигантскую звездную систему, называемую нашей Галактикой. Это — огромный звездный диск, видимый нами изнутри как пересекающая все небо полоса Млечного Пути. Полоса соответствует плоскости диска, где блеск многочисленных далеких звезд сливается в слабое молочно-белое свечение. Поперечник этого диска составляет около 100 000 световых лет.

8 минут и 100 000 лет – вот сравнительные масштабы Солнечной системы и Галактики!

Наша Галактика не единственная в космосе. Многие видимые в телескоп туманности округлой, овальной или линейной формы оказались далекими звездными системами. Некоторые из них по размерам и строению напоминают нашу Галактику, другие от нее отличаются. Ближе других к нам нахо-

дятся небольшие спутники нашей Галактики — Магеллановы Облака. Они видны в Южном полушарии невооруженным глазом. Ближайшая же к нам крупная галактика, похожая на нашу, располагается в созвездии Андромеды. Это знаменитая туманность Андромеды. В ясную безлунную ночь ее тоже можно увидеть без телескопа как слабое вытянутое туманное пятнышко. Свет от туманности Андромеды идет к нам около 2 миллионов лет.

Галактики распределены в пространстве не случайным образом, они образуют скопления. Наша Галактика Млечный Путь и туманность Андромеды входят в так называемое Местное скопление галактик. До большого скопления галактик в созвездии Девы почти 40 миллионов световых лет.

Чем более мощные телескопы сооружали люди, тем более слабые и далекие галактики могли они видеть. К тому же оказалось, что система галактик не пребывает в состоянии покоя, а расширяется: чем дальше от нас находится галактика, тем с большей скоростью она от нас удаляется, тем труднее ее наблюдать. Современные космические телескопы позволяют регистрировать галактики, расстояние до которых составляет миллиарды световых лет. Но этот процесс имеет свой предел, о котором будет рассказано в главе об истории Вселенной.

Туманность Андромеды (вид с ребра)

Около 50 млн световых лет

Скопление галактик в созвездии Девы

Вселенная

Аристотель (384-322 гг. до нашей эры)

Конечно, не всегда Вселенная выглядела для человека так, как она представляется ему сегодня. Достаточно сказать, что многие ее тела не видны невооруженным глазом, а телескоп был изобретен только в начале XVII века.

Стоунхендж. Построен между 1900 и 1600 гг. до н.э.

Представления об устройстве мира у первобытного человека полностью соответствовали его впечатлениям. Если Солнце поднимается каждое утро из-за горизонта на востоке — значит, именно так и движется этот огненный диск. Впрочем, наблюдательность позволяла нашим далеким пред-

кам отметить тот факт, что в разное время года Солнце восходит в разных точках горизонта. Древние саксы в Британии построили целую обсерваторию — Стоунхендж. Эта система мегалитов (укрепленных в грунте и связанных друг с другом каменных блоков) указывала ме-

ста восхода Солнца и Луны в особые дни года – моменты солнцестояний и равноденствий.

Уже в Древней Греции научные умы сумели отвлечься от видимости явлений и хотя бы отчасти проникнуть в их сущность. Грекам принадлежит совершенно потрясающая идея о том, что Земля висит в пространстве, ни на что не опираясь, — мысль, совершенно чуждая сознанию рядового обывателя. Они даже сумели достаточно точно определить размеры земного шара, хотя их оценки расстояний от Земли до других небесных тел были слишком приблизительными. А все

Клавдий Птолемей (около 90-около 160 гг.)

звезды, по их мнению, находились на одном и том же расстоянии от Земли — на внутренней поверхности некоторой сферы. Такое представление продолжало жить и во времена реформатора астрономии Коперника.

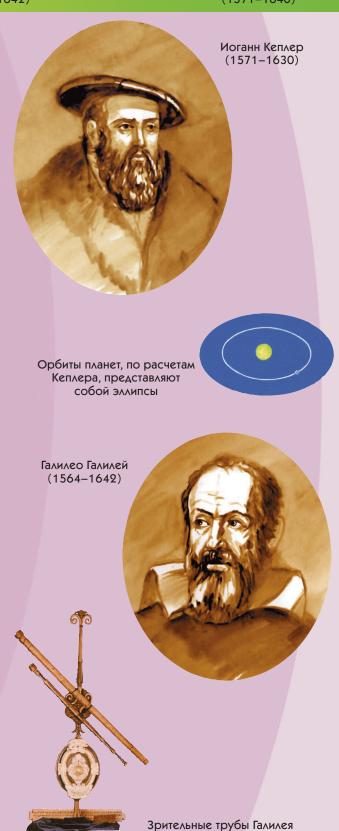
Итоги античной астрономии подведены в фундаментальном труде «Альмагест» Клавдия Птолемея, жившего в Александрии во II веке новой эры. Он не только изложил стройную систему мира, но и сумел весьма точно описать сложные перемещения планет на фоне постоянного рисунка созвездий. Сочинение Птолемея в годы европейской средневековой смуты сохранили для человечества астрономы арабского Востока, и оно до конца XVI века сохраняло значение последнего слова науки по вопросу об устройстве мира.

Античное представление о Земле как центре Вселенной разрушил Николай Коперник (1473—1543), трудившийся в маленьком польском городке Фромборке у берегов Балтики— «на краю обитаемой Вселенной», как сам он говорил. По Копернику, не Земля, а Солнце находится в центре мира, Земля же просто одна из планет, обращающихся вокруг этого светила. Причудливые петли планетных движений получали при этом простое

и логичное объяснение: как результат сочетания движения самой планеты и наблюда-

> Титульный лист книги Клавдия Птолемея «Альмагест» Издание 1549 г.

КОЛУМБЫ ВСЕЛЕННОЙ-1


Николай Коперник (1473–1543) Галилео Галилей (1564-1642) Иоганн Кеплер (1571–1640)

На памятнике Копернику в Варшаве высечены слова – «Остановивший Солнце и двинувший Землю»

теля, тоже движущегося вместе со своей планетой Земля. На памятнике Копернику в Варшаве высечены гордые слова: «Остановивший Солнце и двинувший Землю».

Великие астрономы европейского Возрождения, жившие немного позже Коперника – Иоганн Кеплер, Галилео Галилей, Тихо Браге и другие,далеко продвинули представления о Вселенной, основанные на его гениальной идее. Галилео Галилей (1564-1642) впервые направил на небо изобретенный им телескоп - мощное наблюдательное средство, ставшее на долгое время основным инструментом астрономов. Даже в свои несовершенные зрительные трубы Галилей увидел многое, недоступное прежде человеческому глазу, - горы на Луне, пятна на Солнце, спутники Юпитера, множество слабых звезд на месте однородной полосы Млечного Пути... Это был, по существу, первый шаг в применении технических средств к астрономическим исследованиям – и он сразу дал выдающиеся результаты. В дальнейшем такие шаги предпринимались постоянно, и современная астрономия располагает одними из самых сложных, тонких и «умных» приборов, какие создало человечество.

