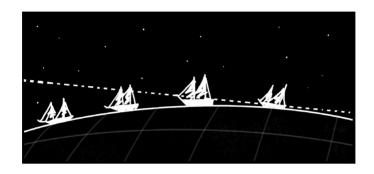
ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ АВТОРА
Глава первая. ЗЕМЛЯ, ЕЕ ФОРМА И ДВИЖЕНИЯ
Глава вторая. ЛУНА И ЕЕ ДВИЖЕНИЯ
Глава третья. ПЛАНЕТЫ
Глава четвертая. ЗВЕЗДЫ
Глава пятая. ТЯГОТЕНИЕ

ПРЕДИСЛОВИЕ АВТОРА

Астрономия — счастливая наука: она, по выражению французского ученого Араго, не нуждается в украшениях. Достижения ее настолько захватывающи, что не приходится прилагать особых забот для привлечения к ним внимания. Однако наука о небе состоит не только из удивительных откровений и смелых теорий. Ее основу составляют факты обыденные, повторяющиеся изо дня в день. Люди, не принадлежащие к числу любителей неба, в большинстве случаев довольно смутно знакомы с этой прозаической стороной астрономии и проявляют к ней мало интереса, так как трудно сосредоточить внимание на том, что всегда перед глазами.

Будничная часть науки о небе — ее первые, а не последние страницы и составляют главным образом (но не исключительно) содержание «Занимательной астрономии». Она стремится прежде всего помочь читателю в уяснении основных астрономических фактов. Это не значит, что книга представляет нечто вроде начального учебника. Способ обработки материала существенно отличает ее от учебной книги. Полузнакомые обыденные факты облечены здесь в необычную, нередко парадоксальную форму, показаны с новой, неожиданной стороны, чтобы обострить внимание к ним и освежить интерес. Изложение по возможности освобождено от специальных терминов и от того технического аппарата, который часто становится преградой между астрономической книгой и читателем.


Популярным книгам нередко делают упрек в том, что по ним ничему серьезно научиться нельзя. Упрек до известной степени справедлив и поддерживается (если иметь в виду сочинения в области точного естествознания) обычаем избегать в популярных книгах всяких числовых расчетов. Между тем читатель только тогда действительно овладевает материалом книги, когда научается, хотя бы в элементарном объеме, оперировать с ним численно. Поэтому в «Занимательной астрономии», как и в других своих книгах той же серии, составитель не избегает простейших расчетов и заботится лишь о том, чтобы они предлагались в расчлененной форме и были вполне посильны для знакомых со школьной

математикой. Подобные упражнения не только прочнее закрепляют усваиваемые сведения, но и подготовляют к чтению более серьезных сочинений.

В предлагаемый сборник вошли главы, относящиеся к Земле, Луне, планетам, звездам и тяготению, причем составитель избирал преимущественно такой материал, который обычно в популярных сочинениях не рассматривается. Темы, не представленные в этом сборнике, автор надеется обработать со временем во второй книге «Занимательной астрономии». Впрочем, сочинение подобного типа вовсе и не ставит себе задачей равномерно исчерпать все богатейшее содержание современной астрономии.

Я. П.

ЗЕМЛЯ, ЕЕ ФОРМА И ДВИЖЕНИЯ

КРАТЧАЙШИЙ ПУТЬ НА ЗЕМЛЕ И НА КАРТЕ

Наметив мелом две точки на классной доске, учительница предлагает юному школьнику задачу: начертить кратчайший путь между обеими точками.

Ученик, подумав, старательно выводит между ними извилистую линию.

- Вот так кратчайший путь! удивляется учительница. Кто тебя так научил?
 - Мой папа. Он шофер такси.

Чертеж наивного школьника, конечно, анекдотичен, но разве не улыбнулись бы вы, если бы вам сказали, что пунктирная дуга на рис. 1 — самый короткий путь от мыса Доброй Надежды до южной оконечности Австралии!

Еще поразительнее следующее утверждение: изображенный на рис. 2 кружной путь из Японии к Панамскому каналу короче прямой линии, проведенной между ними на той же карте!

Все это похоже на шутку, а между тем перед вами — бесспорные истины, хорошо известные картографам.

Для разъяснения вопроса придется сказать несколько слов о картах вообще и о морских в частности. Изображение на бумаге частей земной поверхности — дело непростое даже в принципе,

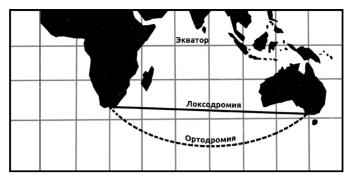


Рис. 1. На морской карте кратчайший путь от мыса Доброй Надежды до южной оконечности Австралии обозначается не прямой линией («локсодромией»), а кривой («ортодромией»)

потому что Земля — шар, а известно, что никакую часть шаровой поверхности нельзя развернуть на плоскости без складок и разрывов. Поневоле приходится мириться с неизбежными искажениями на картах. Придумано много способов черчения карт, но все карты не свободны от недостатков: на одних имеются искажения одного рода, на других иного рода, но карт вовсе без искажений нет.

Моряки пользуются картами, начерченными по способу старинного голландского картографа и математика XVI в. Меркатора. Способ этот называется «меркаторской проекцией». Узнать морскую карту легко по ее прямоугольной сетке: меридианы изображены на ней в виде ряда параллельных прямых линий; круги широты —

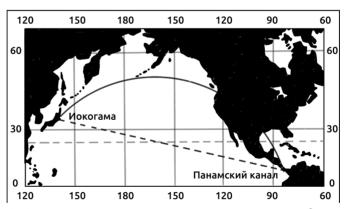


Рис. 2. Кажется невероятным, что криволинейный путь, соединяющий на морской карте Иокогаму с Панамским каналом, короче прямой линии, проведенной между теми же точками

тоже прямыми линиями, перпендикулярными к первым (см. рис. 5).

Вообразите теперь, что требуется найти кратчайший путь от одного океанского порта до другого, лежащего на той же параллели. На океане все пути доступны, и осуществить там путешествие по кратчайшему пути всегда возможно, если знать, как он пролегает. В нашем случае естественно думать, что кратчайший путь идет вдоль той параллели, на которой лежат оба порта: ведь на карте — это прямая линия, а что может быть короче прямого пути! Но мы ошибаемся: путь по параллели вовсе не кратчайший.

Рис. 3. Простой способ отыскания действительно кратчайшего пути между двумя пунктами: надо на глобусе натянуть нитку между этими пунктами

В самом деле: на поверхности шара кратчайшее расстояние между двумя точками есть соединяющая их дуга большого круга*. Но круг параллели — малый круг. Дуга большого круга менее искривлена, чем дуга любого малого круга, проведенного через те же две точки: большему радиусу отвечает меньшая кривизна. Натяните на глобусе нить между нашими двумя точками (ср. рис. 3); вы убедитесь, что она вовсе не ляжет вдоль параллели. Натянутая нить — бесспорный указатель кратчайшего пути, а если она на глобусе не совпадает с параллелью, то и на морской карте кратчайший путь не обозначается прямой линией: вспомним, что круги параллелей изображаются на такой карте прямыми линиями, всякая же линия, не совпадающая с прямой, есть кривая.

После сказанного становится понятным, почему кратчайший путь на морской карте изображается не прямой, а кривой линией.

Рассказывают, что при выборе направления для Николаевской (ныне Октябрьской) железной дороги велись нескончаемые споры о том, по какому пути ее проложить. Конец спорам положило вмешательство царя Николая I, который решил задачу буквально «прямолинейно»: соединил Петербург с Москвой по линейке. Если бы это было сделано на меркаторской карте, по-

^{*} **Большим кругом** на поверхности шара называется всякий круг, центр которого совпадает с центром этого шара. Все остальные круги на шаре называются **малыми**.

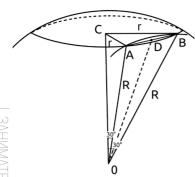


Рис. 4. К вычислению расстояний между точками А и В на шаре по дуге параллели и по дуге большого круга

лучилась бы конфузная неожиданность: вместо прямой дорога вышла бы кривой.

Кто не избегает расчетов, тот несложным вычислением может убедиться, что путь, кажущийся нам на карте кривым, в действительности короче того, который мы готовы считать прямым. Пусть обе наши гавани лежат на 60-й параллели и разделены расстоянием в 60°. (Существуют ли в действительности такие две гавани — для расчета, конечно, безразлично.)

На рис. 4 точка O — центр земного шара, AB — дуга круга широты, на котором лежат гавани A u B; в ней 60° . Центр круга широты — в точке C. Вообразим, что из центра O земного шара проведена через те же гавани дуга большого круга: ее радиус OB = OA = R; она пройдет близко к начерченной дуге AB, но не совпадет с нею.

Вычислим длину каждой дуги. Так как точки A и B лежат на широте 60° , то радиусы OA и OB составляют с OC (осью земного шара) угол в 30° . В прямоугольном треугольнике ACO катет AC (=r), лежащий против угла в 30° , равен половине гипотену-

зы
$$AO$$
; значит, $r=\frac{R}{2}$. Длина дуги AB составляет одну шестую

длины круга широты, а так как круг этот имеет вдвое меньшую длину, чем большой круг (соответственно вдвое меньшему радиусу), то длина дуги малого круга

$$AB = \frac{1}{6} \times \frac{40000}{2} = 3333 \text{ KM}.$$

Чтобы определить теперь длину дуги большого круга, проведенного между теми же точками (т. е. кратчайшего пути между ними), надо узнать величину угла AOB. Хорда AS, стягивающая дугу в 60° (малого круга), есть сторона правильного шестиуголь-

ника, вписанного в тот же малый круг; поэтому $AB = r = \frac{R}{2}$.

Проведя прямую OD, соединяющую центр O земного шара с серединой D хорды AB, получаем прямоугольный треугольник ODA, где угол D — прямой:

$$DA = \frac{1}{2}AB$$
 и $OA = R$.

Значит,

$$\sin AOD = AD$$
: $AO = \frac{R}{4}$: $R = 0.25$.

Отсюда находим (по таблицам):

$$\angle AOD = 14^{\circ}28', 5$$

и, следовательно,

$$\angle AOB = 28^{\circ}57'$$
.

Теперь уже нетрудно найти искомую длину кратчайшего пути в километрах. Расчет можно упростить, если вспомнить, что длина минуты большого круга земного шара есть морская миля, т. е. около 1,85 км. Следовательно, 28°57′ = 1737′ ≈ 3213 км.

Мы узнаем, что путь по кругу широты, изображенный на морской карте прямой линией, составляет 3333 км, а путь по большому кругу — по кривой на карте — 3213 км, т. е. на 120 км короче.

Вооружившись ниткой и имея под руками глобус, вы легко можете проверить правильность наших чертежей и убедиться, что дуги больших кругов действительно пролегают так, как показано на чертежах. Изображенный на рис. 1 будто бы «прямой» морской путь из Африки в Австралию составляет 6020 миль, а «кривой» — 5450 миль, т. е. короче на 570 миль, или на 1050 км. «Прямой» на морской карте воздушный путь из Лондона в Шанхай перерезает Каспийское море, между тем как действительно кратчайший путь пролегает к северу от Петербурга. Понятно, какую роль играют эти вопросы в экономии времени и горючего.

Если в эпоху парусного судоходства не всегда дорожили временем — тогда «время» еще не считалось «деньгами», — то с появлением паровых судов приходится платить за каждую излишне израсходованную тонну угля. Вот почему в наши дни ведут суда по действительно кратчайшему пути, пользуясь нередко картами,

выполненными не в меркаторской, а в так называемой «центральной» проекции: на этих картах дуги больших кругов изображаются прямыми линиями.

Почему же прежние мореплаватели пользовались столь обманчивыми картами и избирали невыгодные пути? Ошибочно думать, что в старину не знали о сейчас указанной особенности морских карт. Дело объясняется, конечно, не этим, а тем, что карты, начерченные по способу Меркатора, обладают наряду с неудобствами весьма ценными для моряков выгодами. Такая карта, во-первых, изображает отдельные небольшие части земной поверхности без искажения, сохраняя углы контура. Этому не противоречит то, что с удалением от экватора все контуры заметно растягиваются. В высоких широтах растяжение так значительно, что морская карта внушает человеку, незнакомому с ее особенностями, совершенно ложное представление об истинной величине материков: Гренландия кажется такой же величины, как Африка, Аляска больше Австралии, хотя Гренландия в 15 раз меньше Африки, а Аляска вместе с Гренландией вдвое меньше Австралии. Но моряка, хорошо знакомого с этими особенностями карты, они не могут ввести в заблуждение. Он мирится с ними, тем более что в пределах небольших участков морская карта дает точное подобие натуры (рис. 5).

Зато морская карта весьма облегчает решение задач штурманской практики. Это — единственный род карт, на которых путь корабля, идущего постоянным курсом, изображается прямой линией. Идти «постоянным курсом» — значит держаться неизменно одного направления, одного определенного «румба», иначе говоря, идти так, чтобы пересекать все меридианы под равным углом. Но этот путь («локсодромия») может изобразиться прямой линией только на такой карте, на которой все меридианы — прямые линии, параллельные друг другу*. А так как на земном шаре круги широты пересекаются с меридианами под прямыми углами, то на такой карте и круги широты должны быть прямыми линиями, перпендикулярными к линиям меридианов. Короче говоря, мы приходим именно к той координатной сетке, которая составляет характерную особенность морской карты.

Пристрастие моряков к картам Меркатора теперь понятно. Желая определить курс, которого надо держаться, идя к назначенному

 $^{^{*}}$ В действительности локсодромия есть спиралевидная линия, винтообразно наматывающаяся на земной шар.

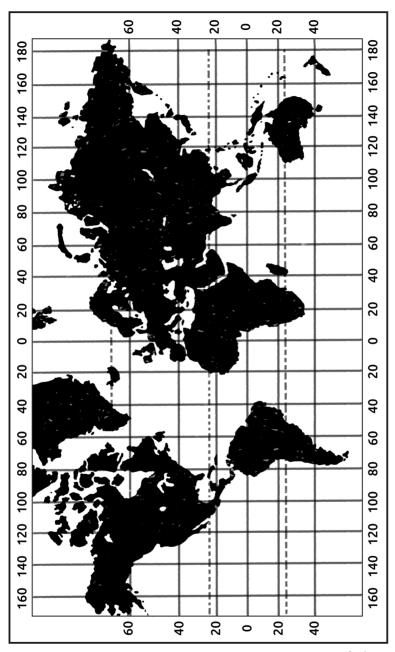


Рис. 5. Морская, или меркаторская, карта земного шара. На подобных картах сильно преувеличены размеры контуров, удаленных от экватора. Что, например, больше: Гренландия или Австралия? (Ответ в тексте)

порту, штурман прикладывает линейку к конечным точкам пути и измеряет угол, составляемый ею с меридианами. Держась в открытом море все время этого направления, штурман безошибочно доведет судно до цели. Вы видите, что «локсодромия» — хотя и не самый короткий и не самый экономный, но зато в известном отношении весьма удобный для моряка путь. Чтобы дойти, например, от мыса Доброй Надежды до южной оконечности Австралии (см. рис. 1), надо неизменно держаться одного курса S 87°,50'. Между тем, чтобы довести судно до того же конечного пункта кратчайшим путем (по «ортодромии»), приходится, как видно из рисунка, непрерывно менять курс судна: начать с курса S 42°,50', а кончить курсом N 53°,50' (в этом случае кратчайший путь даже и неосуществим — он упирается в ледяную стену Антарктики).

Оба пути — по «локсодромии» и по «ортодромии» — совпадают только тогда, когда путь по большому кругу изображается на морской карте прямой линией: при движении по экватору или по меридиану. Во всех прочих случаях пути эти различны.

ГРАДУС ДОЛГОТЫ И ГРАДУС ШИРОТЫ

ЗАДАЧА

Читатели, без сомнения, имеют достаточное представление о географических долготе и широте. Но я уверен, не все дадут правильный ответ на следующий вопрос:

Всегда ли градусы широты длиннее градусов долготы?

РЕШЕНИЕ

Большинство уверено, что каждый параллельный круг меньше круга меридиана. И так как градусы долготы отсчитываются по параллельным кругам, градусы же широты — по меридианам, то заключают, что первые нигде не могут превышать по длине вторых. При этом забывают, что Земля — не правильный шар, а эллипсоид, слегка раздутый на экваторе. На земном эллипсоиде не только экватор длиннее круга меридиана, но и ближайшие к экватору параллельные круги также длиннее кругов меридиана. Расчет показывает, что примерно до 5° широты градусы параллельных кругов (т. е. долготы) длиннее градусов меридиана (т. е. широты).

КУДА ПОЛЕТЕЛ АМУНДСЕН?

ЗАДАЧА

В какую сторону горизонта направился Амундсен, возвращаясь с северного полюса, и в какую — возвращаясь с южного?

Дайте ответ, не заглядывая в дневники великого путешественника.

PFIIIFHUF

Северный полюс — самая северная точка земного шара.

Куда бы мы оттуда ни направлялись, — мы всегда отправились бы на юг.

Возвращаясь с северного полюса, Амундсен мог направиться только на юг; иного направления оттуда не было. Вот выписка из дневника его полета к северному полюсу на дирижабле «Норвегия»:

«"Норвегия" описала круг около северного полюса. Затем мы продолжали путь... Курс был взят на юг в первый раз с того времени, как дирижабль оставил Рим». Точно так же с южного полюса Амундсен мог идти только к *северу*.

У Козьмы Пруткова есть шуточный рассказ о турке, попавшем в «самую восточную» страну. «И впереди восток, и с боков восток. А запад? Вы думаете, может быть, что он всетаки виден, как точка какая-нибудь, едва движущаяся вдали?.. Неправда! И сзади восток. Короче: везде и всюду нескончаемый восток».

Такой страны, окруженной со всех сторон востоком, на земном шаре существовать не может. Но место, окруженное всюду югом, на Земле имеется, как и пункт, охваченный со всех сторон «нескончаемым» севером. На северном полюсе можно было бы соорудить дом, все четыре стены которого обращены на юг. И это в самом деле могли бы сделать наши славные советские полярники, побывавшие на северном полюсе.

ПЯТЬ РОДОВ СЧЕТА ВРЕМЕНИ

Мы так привыкли пользоваться карманными и стенными часами, что не отдаем себе даже отчета в значении их показаний. Среди читателей — я убежден — лишь немногие смогут объяснить, что, собственно, хотят они сказать, когда говорят:

Теперь семь часов вечера.

Неужели только то, что малая стрелка часов показывает цифру семь? Что же означает эта цифра? Она показывает, что после полудня протекло $\frac{7}{24}$ суток. Но после **какого** полудня и прежде всего $\frac{7}{24}$ **каких** суток?

Что такое сутки? Те сутки, о которых говорит известная поговорка «день и ночь — сутки прочь», представляют собой промежуток времени, в течение которого земной шар успевает один раз обернуться вокруг своей оси по отношению к Солнцу. На практике его измеряют так: наблюдают два последовательных прохождения Солнца (вернее, его центра) через ту линию на небе, которая соединяет точку, находящуюся над головой наблюдателя («зенит»), с точкой юга на горизонте. Промежуток этот не всегда одинаков: Солнце приходит на указанную линию то немного раньше, то позже. Регулировать часы по этому «истинному полудню» невозможно, самый искусный мастер не в состоянии выверить часы так, чтобы они шли строго по Солнцу: для этого оно чересчур неаккуратно. «Солнце показывает время обманчиво», — писали парижские часовщики на своем гербе сто лет назад.

Часы наши регулируются не по реальному Солнцу, а по некоему воображаемому солнцу, которое не светит, не греет, а придумано только для правильного счета времени. Представьте себе, что в природе существует небесное светило, которое движется в течение всего года равномерно, обходя Землю ровно во столько же времени, во сколько обходит вокруг Земли — конечно, кажущимся образом — наше подлинно существующее Солнце. Это созданное воображением светило в астрономии именуется «средним солнцем». Момент прохождения его через линию зенит — юг называется «средним полуднем»; промежуток между двумя средними полуднями есть «средние солнечные сутки», а время, так исчисляемое, называется «средним солнечным временем». Карманные и стенные часы идут именно по этому среднему солнечному времени, между тем как солнечные часы, в которых стрелкой служит тень стерженька, показывают истинное солнечное время для данного места. У читателя после сказанного составилось, вероятно, такое представление, что неравенство истинных солнечных суток вызвано неравномерным вращением Земли вокруг своей оси. Земля действительно вращается неравномерно, но неравенство суток обусловлено неравномерностью другого движения Земли, а именно — ее движения по орбите вокруг Солнца. Мы сейчас пой-

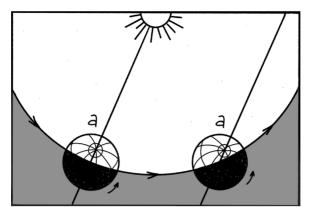


Рис. 6. Почему солнечные сутки длиннее звездных? (Подробности в тексте)

мем, как это может отразиться на длине суток. На рис. 6 вы видите два последовательных положения земного шара. Рассмотрим левое положение. Стрелки внизу показывают, в каком направлении Земля вращается вокруг оси: против часовой стрелки, если смотреть на северный полюс. В точке A теперь полдень: эта точка лежит как раз против Солнца. Представьте себе теперь, что Земля сделала один полный оборот вокруг оси; за это время она успела переместиться по орбите направо и заняла другое место. Радиус Земли, проведенный в точке A, имеет такое же направление, как и сутки назад, но точка A оказывается уже лежащей не прямо против Солнца. Для человека, стоящего в точке A, полдень еще не наступил: Солнце левее прочерченной линии. Земле надо вращаться еще несколько минут, чтобы в точке A наступил новый полдень.

Что же отсюда следует? То, что промежуток между двумя истинными солнечными полуднями *длиннее* времени полного оборота Земли вокруг оси. Если бы Земля равномерно двигалась вокруг Солнца по *кругу*, в центре которого находилось бы Солнце, то разница между действительной продолжительностью оборота вокруг оси и той кажущейся, которую мы устанавливаем по Солнцу, была бы изо дня в день одна и та же. Ее легко определить, если принять во внимание, что из этих небольших добавок должны в течение года составиться целые сутки (Земля, двигаясь по орбите, делает в год один лишний оборот вокруг оси); значит, действительная продолжительность каждого оборота равняется

$$365\frac{1}{4}$$
 суток : $366\frac{1}{4}$ = 23 ч. 56 м. 4 с.

Заметим, кстати, что «действительная» продолжительность суток есть не что иное, как период вращения Земли по отношению к любой звезде; оттого такие сутки и называют «звездными».

Итак, звездные сутки *в среднем* короче солнечных на 3 м. 56 с. круглым счетом — на 4 м. Разница не остается постоянной, потому что: 1) Земля обходит около Солнца не равномерным движением по круговой орбите, а по эллипсу, в одних частях которого (более близких к Солнцу) она движется быстрее, в других (более отдаленных) — медленнее, и 2) ось вращения Земли наклонена к плоскости ее орбиты. Обе эти причины обусловливают то, что истинное и среднее солнечное время в разные дни расходятся между собой на различное число минут, достигающее в некоторые дни до 16. Только четыре раза в год оба времени совпадают:

15 апреля, 14 июня, 1 сентября, 24 декабря.

Напротив, в дни

12 февраля, 3 ноября

разница между истинным и средним временем достигает наибольшей величины — около четверти часа. Кривая на рис. 7 показывает, как велико это расхождение в разные дни года.

До 1919 г. граждане СССР жили по местному солнечному времени. Для каждого меридиана земного шара средний полдень наступает в различное время («местный» полдень), поэтому каждый город жил по **своему** местному времени; только прибытие и отход поездов назначались по общему для всей страны времени: по петроградскому. Граждане различали «городское» и «вокзальное» время; первое — местное среднее солнечное время — показывали городские часы, а второе — петроградское среднее солнечное время — показывали часы железнодорожного вокзала. В настоящее время в России все железнодорожное движение ведется по московскому времени.

С 1919 г. у нас в основу счета времени дня положено не местное, а так называемое «поясное» время. Земной шар разделен меридианами на 24 одинаковых «пояса», и все пункты одного